Stochastic homogenization of degenerate integral functionals and their Euler-Lagrange equations

نویسندگان

چکیده

We prove stochastic homogenization for integral functionals defined on Sobolev spaces, where the stationary, ergodic integrand satisfies a degenerate growth condition of form c|ξA(ω,x)| p ≤f(ω,x,ξ)≤|ξA(ω,x)| +Λ(ω,x) some p∈(1,+∞) and with stationary diagonal matrix A such that its norm inverse satisfy minimal integrability assumptions Λ is nonnegative, function finite first moment. also consider convergence when Dirichlet boundary conditions or an obstacle are imposed. Assuming strict convexity differentiability f respect to last variable, we further homogenized strictly convex differentiable. These properties allow us show associated Euler-Lagrange equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic homogenization of nonconvex integral functionals

— Almost sure epiconvergenee of a séquence of random intégral functionals is studied without convexity assumption. We give aproofby using an Ergodic theorem and recover and make précise the result of S. Muller in the periodic case. Finally, we study the asymptotic behaviour of corresponding random primai and dual problems in the convex case. Resumé. — Le problème étudié dans cet article concern...

متن کامل

Euler-lagrange Equations

. Consider a mechanical system consisting of N particles in R subject to some forces. Let xi ∈ R denote the position vector of the ith particle. Then all possible positions of the system are described by N -tuples (x1, . . . , xN ) ∈ (R) . The space (R) is an example of a configuration space. The time evolution of the system is described by a curve (x1(t), . . . , xN (t)) in (R) and is governed...

متن کامل

The Reduced Euler-Lagrange Equations

Marsden and Scheurle [1993] studied Lagrangian reduction in the context of momentum map constraints—here meaning the reduction of the standard Euler-Lagrange system restricted to a level set of a momentum map. This provides a Lagrangian parallel to the reduction of symplectic manifolds. The present paper studies the Lagrangian parallel of Poisson reduction for Hamiltonian systems. For the reduc...

متن کامل

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

AV-differential geometry: Euler-Lagrange equations

A general, consistent and complete framework for geometrical formulation of mechanical systems is proposed, based on certain structures on affine bundles (affgebroids) that generalize Lie algebras and Lie algebroids. This scheme covers and unifies various geometrical approaches to mechanics in the Lagrangian and Hamiltonian pictures, including time-dependent lagrangians and hamiltonians. In our...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de l'E?cole polytechnique

سال: 2023

ISSN: ['2429-7100', '2270-518X']

DOI: https://doi.org/10.5802/jep.218